Trigonometric functions-graphics (part I)

 $y = a\sin(bx+c)$

Recall the basic graphics y = sinx and its properties.

Features:

- Function defined for all x, that is : $x \in (-\infty, \infty)$
- Set the value function is an interval [-1,1], that is, a function is limited $-1 \le \sin x \le 1$
- Sin x is a periodic function with the main period 2π
- Zero function (where the graph cuts x axis) are $x = 0, x = \pm \pi, x = \pm 2\pi$... or it can be written, taking into account the periodicity $x = k\pi$ $(k = 0, \pm 1, \pm 2, ...)$
- Maximum value functions are $-\frac{3\pi}{2}, \frac{\pi}{2}, \frac{5\pi}{2}, \dots$ we can write: $x = \frac{\pi}{2} + 2k\pi$ $k \in \mathbb{Z}$ - The minimum value function has in $-\frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{2}, \dots$ we can write: $x = -\frac{\pi}{2} + 2k\pi$ $k \in \mathbb{Z}$ - sinx increases in intervals $[-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi], \quad k \in \mathbb{Z}$ - sinx decreases in the intervals $[-\frac{\pi}{2} + 2k\pi, \frac{\pi}{2} + 2k\pi], \quad k \in \mathbb{Z}$
- Function is **positive**, sinx > 0 for $x \in (2k\pi, (2k+1)\pi)$ $k \in \mathbb{Z}$
- Function is **negative**, sinx < 0 for $x \in ((2k-1)\pi, 2k\pi)$ $k \in \mathbb{Z}$
- The graph is called a **sinusoid**

Trigonometric function $y = a \sin(bx + c)$ we will learn to draw in two ways.

The first method consists in the fact that we start from the initial graphics y = sinx and depending on the numbers *a*, *b* and *c* we moving graphics (we will learn how) and the *second way* is to directly test points (zero function, max, min ...) but for it we need to know solve trigonometric equations.

First, note and write down the numbers *a*, *b* and *c*.

$y = a \sin x$

Number *a*, *which* is in front of the sinuses is called *the amplitude* and it is the maximum distance point graphics from x-axis.

For the function y = sinx is the number a = 1 and we see that the graphic is just limited by -1 and 1

If the *number in front of sinus* is positive, the function looks like:

Therefore, the zero remains in place, while the max and min "extend" to the *point a and –a*.

If the number in front of sinus is negative, the function looks like:

Watch out, here is the graph turns!

Example 1. Draw a graph $y = -\sin x$

Here we have a = -1. This indicates that the initial graph is turns.

Example 2. Draw a graph $y = 2\sin x$

Now is a = 2. This means that the function of the y-axis goes from -2 to 2 and that the graph does not turn.

Example 3. Draw a graph
$$y = -\frac{3}{2}\sin x$$

We have that $a = -\frac{3}{2}$.

Periodicity functions $y = a \sin(bx + c)$ directly follows from the periodicity of y = sinx.

The main period of $y = a\sin(bx+c)$ is calculated by the formula $T = \frac{2\pi}{b}$

The number **b** is called the *frequency*, and shows how the whole wave is on the interval $[0, 2\pi]$

Hence, our referred is to observe the number *b*, and insert it into $T = \frac{2\pi}{b}$ to get the base period.

Example 4. Draw a graph $y = \sin \frac{1}{2}x$

≜ y

Initial function y = sinx is here given intermittent. What happened to her? She "stretched" because $T = 4\pi$.

Example 5. Draw a graph $y = \sin 2x$

As is b = 2 then it the main period will be $T = \frac{2\pi}{b} \to T = \frac{2\pi}{2} \to \boxed{T = \pi}$

$$|y = \sin(x+c)|$$
 or $|y = \sin(bx+c)|$ (Number c is called the *initial stage*)

Again, of course, first read from the given function values for *b* and *c*. Then determine the value for $\frac{c}{b}$.

 $y = \sin(bx + c)$ is obtained by moving graphics $y = \sin bx$ along the x axis and (watch this):

i) in a positive direction (right) if the value $\frac{c}{b}$ is negative ii) in a negative direction (left) if the value of $\frac{c}{b}$ is positive

Example 6. Draw a graph $y = \sin(x + \frac{\pi}{2})$

Here are $a=1, b=1, c=\frac{\pi}{2}$. Value of expression $\frac{c}{b}$ is $\frac{c}{b}=\frac{\pi}{2}=\frac{\pi}{2}$. What does this mean?

Since the value of this expression is positive, the initial graph of y = sinx move for $\frac{\pi}{2}$ in left.

Example 7. Draw a graph
$$y = \sin(x - \frac{\pi}{4})$$

$$a=1, b=1, c=-\frac{\pi}{4} \rightarrow \boxed{\frac{c}{b}=-\frac{\pi}{4}}$$
 Move $y = sinx$ for $\frac{\pi}{4}$ right.

Example 8. Draw a graph $y = \sin(2x - \frac{\pi}{2})$

Here are a=1, b=2 and $c=-\frac{\pi}{2}$

$$T = \frac{2\pi}{b} \rightarrow T = \frac{2\pi}{2} \rightarrow \overline{T = \pi}$$
 and $\frac{c}{b} = \frac{-\frac{\pi}{2}}{2} = -\frac{\pi}{4}$

We have to draw three graphics : y = sinx (slika 1.) then y = sin2x (slika 2.) and $y = sin(2x - \frac{\pi}{2})$ (slika 3.)

On picture 2. we see that the graph of sine function "assembled" for period $T = \pi$.

On picture 3. has been made moving graphic y=sin2x for $\frac{\pi}{4}$ in right.

Your professor will probably ask you to apply all three graphics on one picture ... We intentionally draw three pictures for better understand...

<u>Example 9.</u> Draw a graph $y = \sin(\frac{1}{2}x + \frac{\pi}{4})$

$$a = 1, b = \frac{1}{2}, c = \frac{\pi}{4}$$

$$T = \frac{2\pi}{b} \to T = \frac{2\pi}{\frac{1}{2}} \to \boxed{T = 4\pi}$$
 and $\frac{c}{b} = \frac{\frac{\pi}{4}}{\frac{1}{2}} = \frac{2\pi}{4} = \frac{\pi}{2}$

Now we have the knowledge to draw the whole graph $y = a \sin(bx + c)$. See next file:

Trigonometric functions-graphics (part II)