Trigonometric functions-graphics (part I)

$$
y=a \sin (b x+c)
$$

Recall the basic graphics $y=\sin x$ and its properties.

Features:

- Function defined for all x , that is : $x \in(-\infty, \infty)$
- Set the value function is an interval $[-1,1]$, that is, a function is limited $-1 \leq \sin x \leq 1$
- $\operatorname{Sin} \mathrm{x}$ is a periodic function with the main period 2π
- Zero function (where the graph cuts x axis) are $x=0, x= \pm \pi, x= \pm 2 \pi \ldots$ or it can be written, taking into account the periodicity $\quad x=k \pi \quad(k=0, \pm 1, \pm 2, \ldots)$
- Maximum value functions are $-\frac{3 \pi}{2}, \frac{\pi}{2}, \frac{5 \pi}{2}, \ldots$ we can write: $\quad x=\frac{\pi}{2}+2 k \pi \quad k \in Z$
- The minimum value function has in $-\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{7 \pi}{2}, \ldots$ we can write: $\quad x=-\frac{\pi}{2}+2 k \pi \quad k \in Z$
- $\sin x$ increases in intervals $\left[-\frac{\pi}{2}+2 k \pi, \frac{\pi}{2}+2 k \pi\right], \quad \mathrm{k} \in \mathrm{Z}$
- $\sin x$ decreases in the intervals $\left[-\frac{\pi}{2}+2 k \pi, \frac{\pi}{2}+2 k \pi\right], \quad \mathrm{k} \in \mathrm{Z}$
- Function is positive, $\sin x>0$ for $x \in(2 k \pi,(2 k+1) \pi) \quad k \in Z$
- Function is negative, $\sin x<0$ for $x \in((2 k-1) \pi, 2 k \pi) \quad \mathrm{k} \in \mathrm{Z}$
- The graph is called a sinusoid

Trigonometric function $y=a \sin (b x+c)$ we will learn to draw in two ways.
The first method consists in the fact that we start from the initial graphics $y=\sin x$ and depending on the numbers a, b and c we moving graphics (we will learn how) and the second way is to directly test points (zero function, max, min ...) but for it we need to knowto solve trigonometric equations.

First, note and write down the numbers a, b and c.
$y=a \sin x$

Number \boldsymbol{a}, which is in front of the sinuses is called the amplitude and it is the maximum distance point graphics from x -axis.

For the function $y=\sin x$ is the number $a=1$ and we see that the graphic is just limited by -1 and 1
If the number in front of sinus is positive, the function looks like:

Therefore, the zero remains in place, while the max and min "extend" to the point a and $-a$.
If the number in front of sinus is negative, the function looks like:

Watch out, here is the graph turns!

Example 1. Draw a graph $y=-\sin x$

Here we have $\boldsymbol{a}=\mathbf{- 1}$. This indicates that the initial graph is turns.
$\Delta \mathrm{y}$

Example 2. Draw a graph $y=2 \sin x$

Now is $\boldsymbol{a}=\mathbf{2}$. This means that the function of the y-axis goes from -2 to 2 and that the graph does not turn.

Example 3. Draw a graph $y=-\frac{3}{2} \sin x$
We have that $a=-\frac{3}{2}$.

$y=\sin b x$

Periodicity functions $y=a \sin (b x+c)$ directly follows from the periodicity of $y=\sin x$.
The main period of $y=a \sin (b x+c)$ is calculated by the formula $T=\frac{2 \pi}{b}$.

The number \mathbf{b} is called the frequency, and shows how the whole wave is on the interval $[0,2 \pi]$

Hence, our referred is to observe the number b, and insert it into $T=\frac{2 \pi}{b}$ to get the base period.

Example 4. Draw a graph $y=\sin \frac{1}{2} x$

We notice that here $b=\frac{1}{2}$. Then $T=\frac{2 \pi}{b} \rightarrow T=\frac{2 \pi}{\frac{1}{2}} \rightarrow T=4 \pi$

Initial function $y=\sin x$ is here given intermittent. What happened to her? She "stretched" because $T=4 \pi$.

Example 5. Draw a graph $y=\sin 2 x$
As is $b=2$ then it the main period will be $T=\frac{2 \pi}{b} \rightarrow T=\frac{2 \pi}{\&} \rightarrow T=\pi$

$y=\sin (x+c) \quad$ or $\quad y=\sin (b x+c) \quad$ (Number \mathbf{c} is called the initial stage)

Again, of course, first read from the given function values for b and c. Then determine the value for $\frac{c}{b}$.
$y=\sin (b x+c)$ is obtained by moving graphics $y=\sin b x$ along the \mathbf{x} axis and (watch this):
i) in a positive direction (right) if the value $\frac{c}{b}$ is negative
ii) in a negative direction (left) if the value of $\frac{c}{b}$ is positive

Example 6. Draw a graph $y=\sin \left(x+\frac{\pi}{2}\right)$
Here are $\quad a=1, b=1, c=\frac{\pi}{2}$. Value of expression $\frac{c}{b}$ is $\frac{c}{b}=\frac{\frac{\pi}{2}}{1}=\frac{\pi}{2} . \quad$ What does this mean?
Since the value of this expression is positive, the initial graph of $y=\sin x$ move for $\frac{\pi}{2}$ in left.

Example 7. Draw a graph $y=\sin \left(x-\frac{\pi}{4}\right)$
$a=1, b=1, c=-\frac{\pi}{4} \rightarrow \frac{c}{b}=-\frac{\pi}{4} \quad$ Move $y=\sin x$ for $\frac{\pi}{4}$ right .

Example 8. Draw a graph $y=\sin \left(2 x-\frac{\pi}{2}\right)$

Here are $a=1, b=2 \quad$ and $\quad c=-\frac{\pi}{2}$
$T=\frac{2 \pi}{b} \rightarrow T=\frac{\ell \pi}{\&} \rightarrow T=\pi \quad$ and $\frac{c}{b}=\frac{-\frac{\pi}{2}}{2}=-\frac{\pi}{4}$
We have to draw three graphics : $y=\sin x$ (slika 1.) then $y=\sin 2 x$ (slika 2.) and $y=\sin \left(2 x-\frac{\pi}{2}\right)$ (slika 3.)

On picture 2. we see that the graph of sine function "assembled" for period $T=\pi$.

On picture 3. has been made moving graphic $y=\sin 2 x$ for $\frac{\pi}{4}$ in right.
Your professor will probably ask you to apply all three graphics on one picture ... We intentionally draw three pictures for better understand...

Example 9. Draw a graph $y=\sin \left(\frac{1}{2} x+\frac{\pi}{4}\right)$
$a=1, b=\frac{1}{2}, c=\frac{\pi}{4}$
$T=\frac{2 \pi}{b} \rightarrow T=\frac{2 \pi}{\frac{1}{2}} \rightarrow T=4 \pi \quad$ and $\quad \frac{c}{b}=\frac{\frac{\pi}{4}}{\frac{1}{2}}=\frac{2 \pi}{4}=\frac{\pi}{2}$

Now we have the knowledge to draw the whole graph $y=a \sin (b x+c)$. See next file:

Trigonometric functions-graphics (part II)

